记住用户名密码
记住用户名密码
具有高分散性和优异催化活性的铂纳米颗粒催化剂在汽车尾气处理,合成气重整反应,燃料电池电极材料等方面具有重要作用。随着纳米颗粒尺寸的减小,颗粒总体表面积变大,性能会提高,但是颗粒的表面能会急剧增大从而导致稳定性降低,特别是在高温的工作环境中,Pt颗粒容易发生团聚烧结现象,导致粒径增大,表面积减小从而导致活性的降低。已有文献的研究表明,小颗粒的Pt团聚烧结过程主要遵循奥斯瓦尔德熟化(Ostwald Ripening, OR)机理,在这一过程中,Pt颗粒表面的Pt原子在氧气氛围下容易气化为PtO2,PtO2在大颗粒表面重新分解使得颗粒粒径增大,整体表现为小颗粒Pt消失,颗粒整体粒径急剧增大。而在这一过程中,Pt表面的低配位点(边、角处)原子是最不稳定的。
英格兰vs伊朗预测 陈蓉教授和单斌教授近期提出了一种全新的原子层沉积(ALD)生长模式:选择性包覆Pt颗粒的低配位点,直接稳定Pt颗粒的不稳定原子同时保留大部分的活性位点外露。NiOx在Pt颗粒上生长顺序的实验结果表明,在NiOx生长初期,NiOx主要沉积在Pt颗粒的低配位点。前期的NiOx生长导致Pt颗粒低配位点的红外吸附峰强度大幅度下降。理论计算的结果表明这一选择性生长主要是由于NiOx前驱体Ni(Cp)2在Pt不同位点的吸附能差异造成的。这一选择性钝化结构在增强Pt催化活性的同时,大大提高了Pt纳米颗粒的稳定性。在750℃高温煅烧后Pt颗粒的粒径和催化活性仍保持稳定。该部分研究工作发表在ACS Applied Nano Materials上。